本文作者:云初冀北

ndarray的转置(numpy.transpose()与A.T命令对比分析)

ndarray的转置(numpy.transpose()与A.T命令对比分析)摘要: ndarray的转置(transpose)对于A是由np.ndarray表示的情况:可以直接使用命令A.T。也可以使用命令A.transpose()。A.T 与 A.transpo...

ndarray?=转置(transpose)

对于A是由nP.ndArray表示的情况:

可以直接使用命令A.T

也可以使用命令A.transpose()

A.T 与 A.transpose()对比

结论

在默认情况下,两者效果相同,但transpose()可以指定交换axis维度

对于一维数组,两者均不改变,返回原数组。

对于二维数组,默认进标准的转置操作

对于多维数组A,A.shape(a,b,c,d,...,n),则转置后的shape(n,...,d,c,b,a),即逆序。

对于.transpose(),可以指定转置后的维度。

语法A.transpose((axisOrder1,...,axisOrderN)),其效果等同于np.transpose(A,(axisOrder1,...,axisOrderN)),(axisOrder)中是想要得到的索引下标顺序。

效果详见例子。

Example

二维默认情况下:

A = np.array([[1,2],[3,4]]) print(A) print(A.T) print(A.transpose()) 

结果如下:

ndarray的转置(numpy.transpose()与A.T命令对比分析)

多维默认情况下:

a = np.array([[[1,2,3,4],[4,5,6,7]],[[2,3,4,5],[5,6,7,8]],[[3,4,5,6],[4,5,6,7]]]) print(a.shape) print(a.T.shape) print(a.transpose().shape) 

结果如下:

ndarray的转置(numpy.transpose()与A.T命令对比分析)

指定维度情况:

a = np.array([[[1,2,3,4],[4,5,6,7]],[[2,3,4,5],[5,6,7,8]],[[3,4,5,6],[4,5,6,7]]]) print(a.shape) print(a.transpose(1,2,0).shape) A = np.transpose(a,(1,2,0)) print(A.shape) 

结果如下:

ndarray的转置(numpy.transpose()与A.T命令对比分析)

从截图中可以看出,a.transpose(1,2,0)np.transpose(a,(1,2,0))效果相同。

代码段中给出的axes(1,2,0),这决定了transpose后的数组,其shape在第一个维度即shape[0]上是原来的shape[1],第二维shape[1]是原来的shape[2],第三维shape[2]是原来的shape[0]

所以原shape(3,2,4)。新的shape为(2,4,3)

总结

以上为个人经验,希望能给大家一个参考,也希望大家多多支持云初冀北。

免责声明
本站提供的资源,都来自网络,版权争议与本站无关,所有内容及软件的文章仅限用于学习和研究目的。不得将上述内容用于商业或者非法用途,否则,一切后果请用户自负,我们不保证内容的长久可用性,通过使用本站内容随之而来的风险与本站无关,您必须在下载后的24个小时之内,从您的电脑/手机中彻底删除上述内容。如果您喜欢该程序,请支持正版软件,购买注册,得到更好的正版服务。侵删请致信E-mail:Goliszhou@gmail.com
$

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

微信扫一扫打赏

阅读
分享

发表评论

快捷回复:

评论列表 (暂无评论,26人围观)参与讨论

还没有评论,来说两句吧...