opencv调用yolov3模型深度学习目标检测实例详解

2022-11-26 54阅读 0评论

?=引言

OpenCV调用yolov3模型进行深度学习目标检测,以实例进行代码详解

对于yolo v3已经训练好的模型,opencv提供了加载相关文件,进行图片检测dnn。 下面对怎么通过Opencv调用YOLOv3模型进行目标检测方法进行详解,付源代码

建立相关目录

在训练结果backuP文件夹下,找到模型权重文件,拷到win的工程文件夹下 在CFg文件夹下,找到模型配置文件,yolov3-voc.cfg拷到win的工程文件夹下 在data文件夹下,找到voc.names,类别标签文件,拷到win的工程文件夹下

opencv调用yolov3模型深度学习目标检测实例详解

代码详解

weighTSPath='E:\deep_learn\yolov3_modeFile\yolov3-voc_25000.weights'# 模型权重文件 configPath="E:\deep_learn\yolov3_modeFile\yolov3-voc.cfg"# 模型配置文件 LabelsPath = "E:\\deep_learn\\yolov3_modeFile\\voc.names"# 模型类别标签文件 

引入模型的相关文件,这里需要使用yolo v3训练模型的三个文件

(1)模型权重文件 name.weights

(2)训练模型时的配置文件 yolov3-voc.cfg(一定和训练时一致,后面会提原因)

(3)模型类别的标签文件 voc.names

LABELS = open(labelsPath).read().strip().split("\n") 

从voc.names中得到标签的数组LABELS 我的模型识别的是车和人 voc,names文件内容

opencv调用yolov3模型深度学习目标检测实例详解

LABELS数组内容

opencv调用yolov3模型深度学习目标检测实例详解

COLORS = np.random.randint(0, 255, size=(len(LABELS), 3),dtype="UInt8")#颜色  随机生成颜色框 

根据类别个数随机生成几个颜色 ,用来后期画矩形框 [[ 33 124 191] [211 63 59]]

boxes = [] confIDences = [] classIDs = [] 

声明三个数组 (1)boxes 存放矩形框信息 (2)confidences 存放框的置信度 (3)classIDs 存放框的类别标签 三个数组元素一一对应,即boxes[0]、confidences[0]、classIDs[0]对应一个识别目标的信息,后期根据该信息在图片中画出识别目标的矩形框

JS".net = cv2.dnn.readNetfromdarknet(configPath,weightsPath) 

加载 网络配置与训练的权重文件 构建网络 注意此处opencv2.7不行 ,没有dnn这个类,最好opencv版本在4.0以上,对应Python用3.0以上版本

image = cv2.imread('E:\deep_learn\yolov3_detectiON_image\R1_WH_ZW_40_80_288.jpg') (H,W) = image.shape[0:2] 

读入待检测的图片,得到图像的高和宽

ln = net.GetLayerNames() 

得到 YOLO各层的名称,之后从各层名称中找到输出

opencv调用yolov3模型深度学习目标检测实例详解

opencv调用yolov3模型深度学习目标检测实例详解

opencv调用yolov3模型深度学习目标检测实例详解

可以看到yolo的各层非常多,红框圈的'yolo_94'、'yolo_106'即为输出层,下面就需要通过代码找到这三个输出层,为什么是三个?跟yolo的框架结构有关,yolo有三个输出。对应的我们在训练模型时修改 yolov3-voc.cfg文件,修改的filters、classes也是三处,详细参考 blog.csdn.net/qq_32761549… 8. 修改./darknet/cfg/yolov3-voc.cfg文件

opencv调用yolov3模型深度学习目标检测实例详解

下面就是在yolo的所有层名称ln中找出三个输出层,代码如下

out = net.getUnconnectedOutLayers()#得到未连接层得序号 x = [] for i in out:   # i=[200] x.append(ln[i[0]-1])# i[0]-1取out中的数字  [200][0]=200  ln(199)= 'yolo_82' ln=x 

yolo的输出层是未连接层的前一个元素,通过net.getUnconnectedOutLayers()找到未连接层的序号out= [[200] /n [267] /n [400] ],循环找到所有的输出层,赋值给ln 最终ln = ['yolo_82', 'yolo_94', 'yolo_106'] 接下来就是将图像转化输入的标准格式

blob = cv2.dnn.blobFromImage(image, 1 / 255.0, (416, 416),swapRB=True, crop=False) 

用需要检测的原始图像image构造一个blob图像,对原图像进行像素归一化1 / 255.0,缩放尺寸 (416, 416),,对应训练模型时cfg的文件 交换了R与G通道

opencv调用yolov3模型深度学习目标检测实例详解

交换R与G通道通道是opencv在打开图片时交换了一次,此处交换即又换回来了 此时blob.shape=(1, 3, 416, 416),四维。 可以用numpy里的squeeze()函数把秩为1的维度去掉,然后显示图片出来看看

image_blob = np.squeeze(blob) cv2.namedWindow('image_blob', cv2.WINDOW_NORMAL) cv2.imshow('image_blob',np.transpose(image_blob,[1,2,0])) cv2.waitKey(0) 

opencv调用yolov3模型深度学习目标检测实例详解

net.setInput(blob) #将blob设为输入 layerOutputs = net.forward(ln)  #ln此时为输出层名称  ,向前传播  得到检测结果 

将blob设为输入 ln此时为输出层名称 ,向前传播 得到检测结果。 此时layerOutputs即三个输出的检测结果,

opencv调用yolov3模型深度学习目标检测实例详解

layerOutputs是一个含有三个矩阵列表变量,三个矩阵对应三个层的检测结果,其中一层的检测结果矩阵如下图

opencv调用yolov3模型深度学习目标检测实例详解

是个507*7的矩阵,这个矩阵代表着检测结果,其中507就是这层检测到了507个结果(即507个矩形框),其中7就是矩形框的信息,为什么是7呢,这里解释下,7=5+2,5是矩形框(x,y,w,h,c)2是2个类别分别的置信度(class0、class1). 所以每一行代表一个检测结果。

接下来就是对检测结果进行处理与显示 在检测结果中会有很多每个类的置信度为0的矩形框,要把这些与置信度较低的框去掉

#接下来就是对检测结果进行处理 for output in layerOutputs:  #对三个输出层 循环 for detection in output:  #对每个输出层中的每个检测框循环 scores=detection[5:]  #detection=[x,y,h,w,c,class1,class2] classID = np.argmax(scores)#np.argmax反馈最大值索引 confidence = scores[classID] if confidence >0.5:#过滤掉那些置信度较小的检测结果 box = detection[0:4] * np.array([W, H, W, H]) (centerX, centerY, width, height)= box.asType("int") # 边框的左上角 x = int(centerX - (width / 2)) y = int(centerY - (height / 2)) # 更新检测出来的框 boxes.append([x, y, int(width), int(height)]) confidences.append(float(confidence)) classIDs.append(classID) 

现在就将网络的检测结果提取了出来,框、置信度、类别。 可以先画一下看下效果

a=0 for box in  boxes:#将每个框画出来 a=a+1 (x,y)=(box[0],box[1])#框左上角 (w,h)=(box[2],box[3])#框宽高 if classIDs[a-1]==0: #根据类别设定框的颜色 color = [0,0,255] else: color = [0, 255, 0] cv2.rectangle(image, (x, y), (x + w, y + h), color, 2) #画框 text = "{}: {:.4f}".format(LABELS[classIDs[a-1]], confidences[a-1]) cv2.putText(image, text, (x, y - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.3, color, 1)#写字 cv2.namedWindow('Image', cv2.WINDOW_NORMAL) cv2.imshow("Image", image) cv2.waitKey(0) 

结果:

opencv调用yolov3模型深度学习目标检测实例详解

可以看到对于同一目标有几个矩形框,这需要对框进行非极大值抑制处理。 进行非极大值抑制的操作,opencv的dnn有个直接的函数 NMSBoxes(bboxes, scores, score_threshold, nms_threshold, eta=None, top_k=None) bboxes需要操作的各矩形框对应咱程序的boxes scores矩形框对应的置信度对应咱程序的confidences score_threshold置信度的阈值,低于这个阈值的框直接删除 nms_threshold nms的阈值 非极大值的原理没有理解的话,里面的参数不好设置。 下面简单说下非极大值抑制的原理

1)先对输入检测框按置信度由高到低排序

2)挑选第一个检测框(即最高置信度,记为A)和其它检测框(记为B)进行iou计算

3)如果iou大于nmsThreshold, 那就将B清除掉

4)跳转到2)从剩余得框集里面找置信度最大得框和其它框分别计算iou

5)直到所有框都过滤完 NMSBoxes()函数返回值为最终剩下的按置信度由高到低的矩形框的序列号 进行非极大值抑制后,显示部分代码改一部分即可。

直接给出代码

idxs=cv2.dnn.NMSBoxes(boxes, confidences, 0.2,0.3) box_seq = idxs.flatten()#[ 2  9  7 10  6  5  4] if len(idxs)>0: for seq in box_seq: (x, y) = (boxes[seq][0], boxes[seq][1])  # 框左上角 (w, h) = (boxes[seq][2], boxes[seq][3])  # 框宽高 if classIDs[seq]==0: #根据类别设定框的颜色 color = [0,0,255] else: color = [0,255,0] cv2.rectangle(image, (x, y), (x + w, y + h), color, 2)  # 画框 text = "{}: {:.4f}".format(LABELS[classIDs[seq]], confidences[seq]) cv2.putText(image, text, (x, y - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.3, color, 1)  # 写字 cv2.namedWindow('Image', cv2.WINDOW_NORMAL) cv2.imshow("Image", image) cv2.waitKey(0) 

最终的检测结果

opencv调用yolov3模型深度学习目标检测实例详解

至此及用opencv加载yolo v3的模型,进行了一次图片的检测。

3、附源代码

#coDIng:utf-8 import Numpy as np import cv2 import os weightsPath='E:\deep_learn\yolov3_modeFile\yolov3-voc_25000.weights'# 模型权重文件 configPath="E:\deep_learn\yolov3_modeFile\yolov3-voc.cfg"# 模型配置文件 labelsPath = "E:\\deep_learn\\yolov3_modeFile\\voc.names"# 模型类别标签文件 #初始化一些参数 LABELS = open(labelsPath).read().strip().split("\n") boxes = [] confidences = [] classIDs = [] #加载 网络配置与训练的权重文件 构建网络 net = cv2.dnn.readNetfromDarknet(configPath,weightsPath)   #读入待检测的图像 image = cv2.imread('E:\deep_learn\yolov3_detection_image\R1_WH_ZW_40_80_288.jpg') #得到图像的高和宽 (H,W) = image.shape[0:2] # 得到 YOLO需要的输出层 ln = net.getLayerNames() out = net.getUnconnectedOutLayers()#得到未连接层得序号  [[200] /n [267]  /n [400] ] x = [] for i in out:   # 1=[200] x.append(ln[i[0]-1])# i[0]-1取out中的数字  [200][0]=200  ln(199)= 'yolo_82' ln=x # ln  =  ['yolo_82', 'yolo_94', 'yolo_106']  得到 YOLO需要的输出层 #从输入图像构造一个blob,然后通过加载的模型,给我们提供边界框和相关概率 #blobFromImage(image, scalefactor=None, size=None, mean=None, swapRB=None, crop=None, ddepth=None) blob = cv2.dnn.blobFromImage(image, 1 / 255.0, (416, 416),swapRB=True, crop=False)#构造了一个blob图像,对原图像进行了图像的归一化,缩放了尺寸 ,对应训练模型 net.setInput(blob) #将blob设为输入??? 具体作用还不是很清楚 layerOutputs = net.forward(ln)  #ln此时为输出层名称  ,向前传播  得到检测结果 for output in layerOutputs:  #对三个输出层 循环 for detection in output:  #对每个输出层中的每个检测框循环 scores=detection[5:]  #detection=[x,y,h,w,c,class1,class2] scores取第6位至最后 classID = np.argmax(scores)#np.argmax反馈最大值的索引 confidence = scores[classID] if confidence >0.5:#过滤掉那些置信度较小的检测结果 box = detection[0:4] * np.array([W, H, W, H]) #print(box) (centerX, centerY, width, height)= box.astype("int") # 边框的左上角 x = int(centerX - (width / 2)) y = int(centerY - (height / 2)) # 更新检测出来的框 boxes.append([x, y, int(width), int(height)]) confidences.append(float(confidence)) classIDs.append(classID) idxs=cv2.dnn.NMSBoxes(boxes, confidences, 0.2,0.3) box_seq = idxs.flatten()#[ 2  9  7 10  6  5  4] if len(idxs)>0: for seq in box_seq: (x, y) = (boxes[seq][0], boxes[seq][1])  # 框左上角 (w, h) = (boxes[seq][2], boxes[seq][3])  # 框宽高 if classIDs[seq]==0: #根据类别设定框的颜色 color = [0,0,255] else: color = [0,255,0] cv2.rectangle(image, (x, y), (x + w, y + h), color, 2)  # 画框 text = "{}: {:.4f}".format(LABELS[classIDs[seq]], confidences[seq]) cv2.putText(image, text, (x, y - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.3, color, 1)  # 写字 cv2.namedWindow('Image', cv2.WINDOW_NORMAL) cv2.imshow("Image", image) cv2.waitKey(0)

以上就是opencv调用yolov3模型深度学习目标检测实例详解的详细内容,更多关于opencv调用yolov3目标检测的资料请关注云初冀北其它相关文章!

免责声明
本站提供的资源,都来自网络,版权争议与本站无关,所有内容及软件的文章仅限用于学习和研究目的。不得将上述内容用于商业或者非法用途,否则,一切后果请用户自负,我们不保证内容的长久可用性,通过使用本站内容随之而来的风险与本站无关,您必须在下载后的24个小时之内,从您的电脑/手机中彻底删除上述内容。如果您喜欢该程序,请支持正版软件,购买注册,得到更好的正版服务。侵删请致信E-mail:Goliszhou@gmail.com
$

发表评论

表情:
评论列表 (暂无评论,54人围观)

还没有评论,来说两句吧...